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Visualisation of many-particle model spaces with application to 
the shell-model calculations 
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lnstitut fur Astrophysik, Max-Planck-Institut fur Physik und Astrophysik, Karl-Schwarz- 
schild-Strasse 1, 8046 Garching bei Munchen, West Germany, 

Received 16 April 1986 

Abstract. The bases of model spaces used in many-body theory may be visualised using 
graphs. The graphs allow a deep insight into the structure of these spaces and facilitate 
rapid evaluation of matrix elements, making shell-model calculations in the spaces of lo6 
dimensions quite practical. Four examples of graphs are given: representing the spin space, 
the space of symmetry-adapted configurations-of a molecule, representing S 2  (or T2) 
eigenstates, and representing the space of ( J 2 ,  T z )  eigenstates, including their genealogy. 
Questions related to the computer analysis of such graphs are discussed and different 
approaches compared in a practical test. Advantages of the graphical representation of 
model spaces are summarised. 

1. Introduction 

Almost every textbook on quantum mechanics starts from the concept of Hilbert spaces, 
o r  linear spaces in general. The many-body theory, concerned with the solution of 
certain equations that are defined in such spaces, has developed from diagrammatic 
perturbation theory used in quantum electrodynamics. Thanks to Feynman diagrams 
we know now how to represent and interpret different interactions described by 
perturbation expansion (cf the marvellous book by Mattuck (1976)). However, no 
attempt has been made to visualise the many-particle spaces in which all the action is 
taking place. In this paper I want to point out that such a visualisation is possible 
and desirable, giving us-similar to the case of many-body diagrammatic approaches- 
the language and  the method of calculations. 

Many-particle model spaces appear in the nuclear, atomic and  molecular physics. 
While in molecular or atomic problems Hartree-Fock (or multiconfigurational H F )  

wavefunctions give a good approximation and allow for a meaningful truncation of 
the full space of N-particle functions that may be constructed from n orbitals (single- 
particle functions), such is usually not the case in nuclear problems, where harmonic 
oscillator wavefunctions are, almost exclusively, taken as orbits (cf Wong 1981). The 
full spaces have very high dimensions and therefore shell-model calculations in nuclear 
physics are concentrated mainly in the sd shell, with only modest studies of other 
shells (McGrory and Wildenthal 1980). The three general purpose computer programs 
for shell-model calculations used at present were written in the 1960s (Cohen et a1 
1966, French et a1 1969) or  the beginning of the 1970s (Whitehead 1972), with progress 
in the last decade coming mainly from the development of computer technology. In 
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contrast to nuclear shell-model codes the development of computer programs in 
molecular physics has been particularly rapid in the last ten years (cf the review by 
Duch and Karwowski (1985)). The number of basis functions used in configuration 
interaction calculations has exceeded lo6 (Saxe er a1 1982) and, although general 
programs are most effective for singly or doubly excited configurations out of a set of 
reference configurations, calculations in the full space of a similar size were also 
reported for a few molecules (Harrison and Handy 1983). The comparatively slower 
development of atomic and nuclear physics progra2s m,ay be only partially due to the 
complications arising from higher symmetry: the ( J 2 ,  T 2 )  eigenstates were used only 
in the Rochester-Oak Ridge code (French et a1 1969), the two other programs being 
based on determinants (M scheme). Molecular programs, which work in very large 
many-particle spaces, do  not create the Hamiltonian matrix but rather, using the list 
of one- and two-particle integrals, recreate matrix elements when they are needed-a 
similar philosophy lies behind the Glasgow code (Whitehead er a1 1977). However, 
the molecular programs do  recognise that there are many matrix elements with exactly 
the same value and these are calculated only once; sometimes the elements differ only 
in the integrals but have the same coupling coefficients. This is a reflection of the 
structure of the space, i.e. the way the basis states of this space are constructed and 
mutually related. It was much easier to notice and use this structure in the case of 
spaces composed of singly and doubly excited configurations than for the full spaces, 
although now the structure of determinantal spaces and spin-eigenfunction spaces is 
known in detail (Duch 1985a, Duch and Karwowski 1985). The recognition of this 
structure and the insight into the structure of matrices representing operators in the 
corresponding spaces was made possible by the graphical representation of these 
spaces. Graphical visualisation of distinct rows in Paldus tableaux (Shavitt 1981, 1983) 
and subsequent visualisation of the configuration spaces (Duch and Karwowski 1981, 
1982) was followed by graphical visualisations of many different model spaces (Duch 
1985a, 1986b). 

In the next section, after a short introduction of basic concepts, four examples of 
graphs are presented: the well known branching diagram representing the spin space 
helps to introduce main concepts, the second graph describes S = 1 (or T = 1) space 
for six particles in six orbits, the third graph describes full space of symmetry-adapted 
configurations for water in a double-zeta basis, and the last represents J = 2, T = 0 
space for two neutrons and two protons in ( ~ , , ~ + d ~ / ~ + d ~ / ~ )  shells. Computer aspects 
of such a representation are addressed in the next section, with various strategies of 
using the graphs in practical calculations described. In the final section advantages 
of the graphical representation of model spaces (or GRMS) are summarised. 

2. Examples of a graphical visualisation of model spaces 

Graphical representation is introduced here using a simple example (cf also Duch 
1985a). Many-particle states are built from simpler objects possessing some symmetry. 
We may start from a set of one- or two-particle states-let us call them primitive states 
or just primitives. They are the ‘building bricks’ of the N-particle states IO). Many- 
particle states fulfil certain symmetry requirements: permutational symmetry (usually 
antisymmetry), spatial symmetry (IO) should transform as a basis of a representation 
of the spatial sy?mejry grfup of the system) or spin symmetry (IO) should be the 
eigenfunction of S,, S2  or J 2  operators). From the group-theoretical point of view we 
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want to construct, using products of primitive states, a tensor product carrier space 
that cames the representations ofi various symmetry groups of a system. Eigenstates 
of { f i k }  operators will be called {ok}-adapted states and the space of such eigenstates 
{&}-adapted space. In general, if the states transform as a representation of a certain 
symmetry group r, we call these states r-adapted and the corresponding graph r- 
adapted. The question that arises now is: how can such a symmetry-adapted space be 
visualised? 

The simplest example one can find is the spin space. Here we have two kinds of 
primitive objects: spin-up It) and spin-down 1.1) states. The operators that ‘shape’ OUJ 

space-(in the sense that graphs adapted to different operators lock differ5nt) are S, 
and S2 operators. In figure 1 we see the representation of the S,- and S2-adapted 
N-particle spaces in the form of the well known spin diagrams (cf Pauncz 1979). These 
graphs represent the whole spin function spaces. Each path in the graph starts from 
the (0,O) vertex and is composed of N segments (arcs), the last one reaching the 
( N ,  S) vertex; a path corresponds uniquely to one N-particle spin function. Near each 
vertex the total number of paths reaching it is written. Spin paths in the branching 
diagram give ‘proper’ labels, in the sense that they contain all the information necessary 
to calculate matrix elements needed in the many-body calculations. On the other hand, 
listing the quantum numbers of a state does not give that information unless the whole 
genealogy is specified. Therefore a properly constructed graph should contain the 
genealogy of all the states within it. To calculate the matrix element (LIAJR) we simply 
htve>o compare the paths corresponding to the IL) and ( R )  states. In case of 
(Sz,S2)-adapted spin spaces each operator is expressed as a combination of the 
permutation operators. Very efficient methods of matrix element calculation in the 
spin spaces were recently published (Duch 1985b, 1986, Rettrup 1986). 
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Figure 1. ( a )  35-dimensional :pace of 3, spin eigenfunctions for seven spins and Ms =f. 
( b )  14-dimensional space of S2 spin eigenfunctions (branching diagram) for seven spins 
and S = f. 

In the second example let us take Ika)=(kT) or l k i )  one-particle states, k =  
1,2, . . . , n, as our primitives, where Ik?) = Ik)lT) is a product of a spatial and a spin 
(isospin) state. We can visualise the resulting space in a few different ways (Duch 
1985a, 1986b), for example using a graph shown in figure 2. This graph is similar to 
the four-slope graph of Shavitt (1983), but instead of n it has 2 n  levels and therefore 
is more legible. A short vertical line (called an arc) joining two vertices represents an 
unoccupied primitive state, while two kinds of skew lines are used to differentiate 
between occupied (k?) and Ik.1) primitives. The position of the vertices within the 
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Figure 2. 189-dimensional space of the six-panicle functions coupled to the S = 1 eigenstate 
built from eight primitive lkf) and I k l )  states, visualised using a simple two-slope graph 
with different slopes of arcs for I k t )  and lk.1) states. 

graph is characterised now by three numbers: k, N and S. A path is a collection of 
2n (12 in this case) arcs, starting from the top arc ( k  = l?) to the bottom ( k  = n.l) and 
represents the six-particle state coupled to S = 1. Again, comparing IL) and IR) paths 
in the graph it is easy to calculate the matrix element of an operator between the two 
corresponding states. 

In the examples discussed above each path of the graph corresponds uniquely to 
the one of the basis functions. One- and two-electron operators that do not change 
the number of particles are expressed using the shift operators E ,  (Bohr and Mottelson 
1969) in the following way: 

where il, i2 are the spin-independent one- and two-particle operators, and is the 
spin-dependent one-particle operator. Similar expressions are obtained using spherical 
tensor operators. Acting with E ,  on a function represented by the path lR)  in the 
graph it is easy to find all the paths 1 L)  giving (Ll E , (  R )  # 0. The value of this matrix 
element is given by a product of coefficients assigned to the arcs k, for is k < j ,  
belonging to the two paths IL), IR) (cf Shavitt (1981), Duch (1986b) for spin eigenfunc- 
tions or Duch (1985a) for determinants). 

Another possibility is to represent linear subspaces rather than individual states. 
In molecules such as water the symmetry group is non-degenerate and each orbital is 
occupied at most twice. A configuration, like la~2a:3a14a, 1 b22bz3b24b2 represents a 
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linear subspace, in this case (six singly occupied orbitals) corresponding, for example, 
to five singlet or nine triplet spin eigenstates, or 20 determinants with M = 0, or 15 
determinants with M = 1, etc. In figure 3 we see a representation of a space of orbital 
configurations of water, a ten-electron system with 14 orbitals (double-zeta basis). 
There are 76 670 configurations of A, symmetry, corresponding to 256 473 ‘A, states. 
To obtain configurations of the desired symmetry only, some of the vertices were 
removed from the graph and the orbitals were ordered according to their symmetry. 
The same graph without removed vertices has 270 270 paths corresponding to 1002 001 
singlet functions. The power of the graphical representation is clearly seen in this 
figure: although the dimension of space is very large the graph is small. The ‘bookkeep- 
ing problem’, a problem in traditional approaches (cf Cohen et a1 1966, Wong 1981), 

0 1 2  3 4 5 6 7 8 9 10 

1( A l l  

2( A l )  

3( A l l  

4 All 

H All 

64 All 

7( All 

8( All 

9( 611 

10( 611 

111 BZl 

12( E21 

13( 821 

141 521 ’ XI 
A1 symmetry, 5.0 76670 

Figure 3. Configurations of water in double-zeta basis and A, symmetry. This picture 
comes as a part of the output from a computer program. For 0 singles, 1 spinfunction, 
2002 configurations and 2002 states. For 2 singles, 1 spinfunction, 17 325 configurations 
and 17 325 states. For 4 singles, 2 spinfunctions, 32 760 configurations and 65 520 states. 
For 6 singles, 5 spinfunctions, 20 020 configurations and 100 100 states. For 8 singles, 14 
spinfunctions, 4290 configurations and 60 060 states. For 10 singles, 42 spinfunctions, 273 
configurations and 11 466 states. Total number of A,  configurations: 76 670. Total number 
of S = 0 states: 256 473. 
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simply vanishes. Consider now the shift operator E 4 b 2 , 3 b 2  acting on one of the 10 686 
configurations whose paths cross the (12,9) vertex (figure 3) and have the form 
. . .36:46:. Then all the 10686 matrices 

have the same value (in this case it is a unit matrix of a dimension corresponding to 
the linear subspace represented by I L) configuration) and the lexical indices correspond- 
ing to the IL) and IR) paths in a standard order (cf Duch and Karwowski 1985) are 
immediately obtained from the graph as: number L = 37 322 + K ,  number R = 17 682 + 
K ,  K = 1 , 2 , .  . . , 10 686. In the space represented in figure 3 among all 1.15 million 
matrices ( L ( H , (  R )  containing for singlet eigenfunctions 32 million matrix elements (Le. 
elements between individual spin eigenfunctions) there are only 432 different matrices. 
It is not much harder to find an arbitrary contribution from a product of two shift 
operators. 

Our final example, in figure 4, shows the often used basis (d5,2+~1,2+d3,2)  for the 
case of two neutrons and two protons, with four-particle states coupled to J = 2, T = 0. 
The graph is complicated because each vertex is characterised by the number of particles 
plus intermediate J and T values. To make the graph more legible the T values are 
shown only for N = 2. The labelling of the J 2  eigenfunctions always presents a problem 
in traditional schemes; graphical labelling, showing the whole genealogy, could make 
all redundancy labels spurious. Unfortunately it would also make the graph much 
more complicated. The paths in figure 4 do not give proper labels of the states they 
represent because no attempt has been made to present the parentage within the 
equivalent groups of particles. Therefore only the mixed groups have proper genealogy. 

N O  1 2  3 4 

J 2 2 2 2  2 

0 f 0 1 0 1 0 1 0  1 0 1 0  1 T 

; + i o  , 3 4 5 1 3  i 1 

Figure 4. J =2,  T=O states of two neutrons and two protons in (d5,2+s,,2+dJ,2) basis 
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In the case when ambiguity could arise different intermediate couplings, arising for 
mixed configurations, are shown in the middle of a level to give genealogy of the states. 
To obtain proper labels supplementary graphs showing the couplings within equivalent 
configurations ( s i l 2 ,  d;,,, d;,,, r = 2,3,4 in this case) are needed. Because these type 
of graphs are quite complicated, to simplify the analysis of the corresponding spaces 
we can draw a graph with configurations (there are only 14 in this ca2e) *and then 
resolve separately each subspace corresponding to a configuration into ( J 2 ,  T z )  eigen- 
state graphs. 

3 Computer-related problems and the strategy of computations 

Representation of graphs in a computer does not present any problems and has been 
a favourite subject of computer scientists for a long time. Representation of graphs 
with fixed number of slopes at each level is particularly simple (cf Duch and Karwowski 
1985, Duch 1985a). The graph of figure 3, for example, is represented using only 330 
numbers. The crucial part in the analysis of the graph is the search for pairs of [ L ) ,  
IR) paths. There are many searching algorithms that may be used for this problem. 
Using the three-slope graph of figure 3 as an example I tested several versions of depth 
search (DS)  algorithms: a simple DS algorithm, DS modified to take advantage of the 
simple structure of the graph near its borders (when (k, N - 1) vertex is reached the 
remaining arc is on one of n - k levels and these n - k paths form a ‘ladder’ in the 
graph that is easily analysed explicitly; similarly for (k, N -2 )  vertex), DS with fixed 
number of singly occupied arcs (Duch 1985a). I also tested a global algorithm (cf 
Duch 1986a) and breadth search algorithm (as described in Duch and Karwowski 
1985). For full spaces with a rather small number of orbits all these algorithms are 
about equally efficient, except that the breadth search and the global algorithms become 
impractical for large spaces, requiring too much memory. For spaces with a large 
number of orbits and only few particles the modified depth search algorithm is 
preferable. However, the best approach seems to be the cutting of a graph at a level 
where the total number of paths coming from the top is roughly equal to the number 
of paths coming from the bottom. For each of the vertices at such level the analysis 
is done separately in the upper part and in the lower part and the results are combined. 
Using this approach on a scalar computer (Siemens 7880), the 270 270 paths correspond- 
ing to the graph in figure 3 without removed vertices were enumerated in 0.34 s, while 
on a Cray XMP (single processor) it took 0.06 s. The corresponding times for other 
algorithms were at least an order of magnitude longer. Although the searching 
algorithms are hard to vectorise because of non-linear indexing and recursive nature 
of searching, breaking the graph into two parts leaves most of the work for the loops 
connecting the two parts and makes vectorisation possible. With this approach (it may 
be pictured as taking the square root of a graph) the logical part of the large scale 
calculations should take a rather insignificant part of the total time. 

To avoid storage problems with a large number of matrix elements Lanczos’ scheme 
is usually advocated (Whitehead et a1 1977). When the diagonal matrix elements are 
dominant Davidson’s modification of Lanczos’ algorithm gives faster convergence 
(Davidson 1975). There are a few general strategies one may adopt writing a general 
program f0.r shell-model calculations. The simplest approach is to use the M scheme, 
or determinants with a proper M, value. The graph of orbital configurations (cf figure 
3) may be readily used in such calculations: the elements of the shift operators in the 
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determinantal basis are obtained at almost no cost simply by taking them from a small 
table (Duch 1986~) .  Another graphical description of determinantal spaces may also 
be readily employed. The structure of the corresponding spaces is known in all details. 
The second strategy is>heAuse of the coupled scheme, i.e. full use of the symmetry. 
The structure of the (J’ ,  T2)-adapted spaces is rather complicated (cf figure 4) and 
the graphical rules for calculation of matrix elements so far are not worked out. The 
existence of equivalent electrons makes the orbital angular momentum eigenfunctions 
much more complicated than the spin functions-the results for equivalent electrons 
have to be ‘factored out’ and added separately to the graphical rules. Such rules should 
always be useful,)utAit is not clear how much there is to be gained from analysis of 
the structure of (J’ ,  T2)-adapted graphs in view of their complication. 

Between these two extreme approaches there is a range of possibilities so far little 
explored. Adding the Abelian symmetry subgroup r of a full rotational group reduces 
the dimension of the space significantly without introducing any essential complica- 
tions. Using the T scheme is equivalent to the use of S*-adapted graphs and the 
structure of such graphs is known in detail (cf Duch and Karwowski 1982, 1985). The 
programs based on these graphs, developed at present for molecular calculations, may 
be adapted to nuclear erobleps as well. Calculating elements of matrices between 
two configurations of ( J r ,  r, T*)-adapted graph we may transform these matrices to 
the ( j2LT2)-adapted bases, while still being able to use the simpler structure of the 
(jZ, r, T2)-adapted graph. It is enough to know how (&, r)-adapted configurations 
are resolved into j2-adapted components to find the transformation matrix. Thus if 
ALR = ( L ~ A ~ R )  is matrix between two configurations IL), I R )  corresponding to d, 
functions of the ( J z ,  r) space that are resolved into d ,  = d, + d,,+. . . functions in the 
j 2  space, A,, = U t A L R U  is defined in the ( j z ,  r, f2) space, where U is the rectangular 
dM x dJ transformation matrix. If the Lanczos’ algorithm is used and A,, does not 
appear many time coefficients of the trial wavefunction may be multiplied directly by 
U, ALR and U’, instead of performing the two matrix multiplications (of ALR by U 
and U ’ ) .  Because the number of different types of configurations is rather limited the 
number of transformation matrices, obtained by an$ytical methods or by a direct 
diagonalisation of the matrix of j 2  operator in the (Jz, r)-adapted basis, should also 
b: limiied. The transformation method is particularly simple when a reduction from 
Sz- to S*-adapted space is ma$e, because the transformation matrices depend only on 
the desired multiplicity of the S2 eigenfunctions and on the number of singly occupied 
orbitals (Duch 1986~) .  

4. Summary 

The main points of the graphical representation of model spaces may be summarised 
as follows. 

(1) Spaces of a very high dimension may be represented by small graphs. Each 
path in a graph corresponds to a one- or more-dimensional subspace of the large space. 

( 2 )  Hierarchica! representation of spaces sometimes simplifies their visualisation: 
for example, the ( L z ,  S*)-adapted space may first be visualised using an f,-adapted 
n-level graph, each path corresponding to a configuration labelling a subspace of 
g2-adapted states. 

(3) Graphs may have different topologically equivalent representations, the 
simplest being the fixed-slope graphs, like the two-slope graphs of figure 1 or the 
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variable-slope graphs, the slope at each level depending on the type of its ‘building 
brick’, i.e. primitive state, like in the graph of figure 2. Reordering of the levels leads 
to a new representation of the same space, the new graph being in general not equivalent 
topologically to the former one. 

(4) The calculation of matrix elements does not require the knowledge of the 
explicit structure of functions represented by a graph. As long as one can construct 
a ‘proper’ label all the information necessary for matrix element evaluation may be 
included in the graph. Thus the graph carries all geometrical or structure information, 
while all physics is contained in the one- and two-body integrals. 

( 5 )  Graphical representation makes the structure of the whole space clearly visible, 
and the structure of this space is reflected in the structure of the matrices representing 
operators acting in the space described by a graph. This has great practical value 
when computer programs are constructed (cf Robb and Niazi 1984, Duch and 
Karwowski 1985). 

(6) In molecular or atomic physics one may develop intuitions based on the shape 
of the graphs, recognising the relatively unimportant parts of the graph that may be 
removed reducing the dimension of the whole space without significant loss in accuracy. 
Selection of configurations is of prime importance in practical applications in view of 
the rather large one-particle basis sets needed for an accurate description of electron 
correlation in atoms and molecules and the huge dimensions of the resulting many- 
particle spaces. 

(7) The idea of a graphical representation of model spaces is theory independent; 
so far graphs were used to describe the bases of the unitary group U(n) and the 
symmetric group S N ,  bases adapted to the g2 operator, in a theory-dependent context. 
This point should be emphasised because there seems to be a lack of understanding 
of the simple fact that graphs represent spaces, not only ‘distinct rows in Paldus 
tableaux’ or likewise theoretical constructs (cf Esser 1984). The excellent results 
achieved with a four-slope n-level g2-adapted graph (cf Shavitt 1983) that was intro- 
duced to describe the Gel’fand basis of the U( n )  group, are clearly due to the insight 
gained from the visualisation of the space rather than to the clever way of matrix 
element calculation based on the unitary group theory. The same expressions for 
matrix elements may easily be obtained without any reference to the unitary group 
(Duch 1986b). 

(8) While Feynman-type diagrams are natural in many-body methods based on 
perturbation expansion the graphical representation of model spaces describes these 
spaces globally and is therefore more natural in variational approaches, although it 
should also be useful for calculation of matrix elements in perturbation theory. 

(9) The labelling of atomic and nuclear states (or other states arising from degener- 
ate point groups) is properly done using complicated chains of subgroups. The use 
of artificial quantum numbers like seniority is neither general nor elegant. The graphical 
description of these states may be a useful alternative. 

(10) The connection of graphical representation of model spaces with well estab- 
lished branches of mathematics, such as the theory of Diophantine equations (Mordell 
1969), the theory of partitions (cf Andrews 1976), graph theory (cf Harary 1969) or 
operation research and especially integer programming (Garfinkel and Nemhauser 
1972) are evident, although so far very little explored. 

The ideas described in this paper should be treated more as a research program 
than a complete theory. Graphs of the fixed-slope type, representing model spaces, 
are simpler than general graphs used in physics and mathematics. Finding most efficient 
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computer representation and algorithms to deal with these graphs is one ofthe problems. 
Creating the programs that will use full insight into the structure of graphically 
represented spaces is quite a:hallenge. So far only the spaces of Abelian symmetry 
functions and eigenspaces of S2 were analysed in detail (Duch 1986b) and the graphical 
rules of matrix element evaluation derived. Non-Abelian problems are much more 
complicated. It is hard to include the representation of equivalent particles in a graph 
or to translate, say, Jahn and van Wieringen ( 195 1) genealogical Young-Yamanouchi 
decomposition in the LST model into proper graphical terms, but a modest step in this 
direction has been taken. However, I must admit that since the GRMS idea is rather 
new there are many problems that were never seriously considered. 

Except for technical developments-judging from the molecular physics applica- 
tions (Shavitt 1983) it should be possible to solve routinely problems in the lo6- 
dimensional spaces-GRMs should bring also methodological developments. It should 
be possible to solve exactly some problems with truncated model Hamiltonians by 
analysing, with the help of a graph, the structure of the Hamiltonian matrices. Another 
exciting possibility is a formulation of the space-enlargement perturbation theory, i.e. 
treating the problem in ( n  + 1)-orbital space as a perturbation of the n-orbital space 
problem. A detailed analaysis of the structure of matrix representations of the operators 
is necessary to formulate such a theory and it obviously depends on a detailed analysis 
of the structure of the spaces used. Work in these directions is in progress. 
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